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Symmetries from Topological Operators

2022: The symmetries of a QFT is generated by the set of topological defects in
the theory.
This is a long way from Noether’s 1918 continuous ”Lieschen” type
symmetries, though the core idea is the same:

O
Dg

d−1



Generalized Global Symmetries

Recent explosion of symmetries:

1. Higher-form symmetries Γ(p):
charged objects are p-dimensional defects, charge measured by
topological operators Dg

d−(p+1).

2. Higher-group symmetries:
p-form symmetries might not form product groups

3. Non-invertible symmetries:
relax group law⇒ fusion algebra

4. Higher-categorical symmetries:
topological operators of dimensions 0, · · · , d− 1, with non-invertible
fusion



1. Higher-form symmetries Γ(p)

p-dimensional charged defects, whose charge is measured by topological
operators Dg

q=d−(p+1), g ∈ Γ(p) [Gaiotto, Kapustin, Seiberg, Willett, 2014]

Dg
q ⊗Dh

q = Dgh
q , g, h ∈ Γ(p)

p-dim extended operators links with these, and can be charged under Γ(p):

E.g. p = 1

L1

Dg
d−2

L1

Dg
d−2

L1

qg(L1)×L1

The topological operators Dd−2 are the Gukov-Witten operators.



Higher-Form Symmetries

• Background field: Bp+1 ∈ Hp+1(M,Γ(p))

• Gauging: summing over all such B.

• Intuitive way to think about these: Γ(1) is the set of line operators modulo
junctions by local operators.

Example:

pure G (simply-connected) Yang Mills theory. The genuine line operators are
Wilson lines, and local operators are in the adjoint, so

Γ(1) = ZG = Center(G)

Screening by matter, depends on charge of reps under center.

Physics: Γ(1) provides an order parameter for confinement.



2. Higher-Group Symmetries

Higher-form symmetries might not form product groups, e.g. Γ(1) × Γ(0), but
a group extension. [Sharpe][Tachikawa][Benini, Cordova, Hsin....]

Warmup: 0-form symmetries as extension groups

Famously there are two finite groups of order 4:
[http://www.youtube.com/watch?v=BipvGD-LCjU]

Klein = Z2 ×Z2 and Z4 .

Z4 can be thought of as a non-trivial extension

1→ ZA
2 → Z4→ ZB

2 → 1

These are characterized by the non-trivial element in the group cohomology
H2(ZB

2 ,ZA
2 ) = Z2.



2-Group Symmetries

Let ZA
2 be Γ(1), and ZB

2 part of a the 0-form flavor symmetry F . Two intuitive
ways to think about 2-groups:

• Line operators (charged under Γ(1)) can be screened by local operators
which carry charge under the flavor symmetry
⇒ introduces an extension of Γ(1) by flavor data.

• Background fields: B2 background for Γ(1) and B1 flavor bundle:

δB2 = B∗
1Θ

where Θ ∈ H2(BF,Γ(1)), and B1 :Md→ BF .

Examples: at least as frequent as mixed ’t Hooft anomalies.

4d Spin(4N + 2) + V matter [Lee, Ohmori, Tachikawa]

5d SU(2)0 SCFT [Apruzzi, Bhardwaj, Oh, SSN]

6d SCFTs classified all theories with 2-groups [Apruzzi, Bhardwaj, Gould, SSN]



3. & 4. Non-Invertible and Higher-Categorical Symmetries

So far: all topological defects had fusions obeying group multiplication (in
particular there was an inverse to each generator).

• Non-invertible symmetries:
relax group law⇒ fusion algebra

Di
p ⊗Dj

p =
⊕
k

N ij
k Dk

p

This is very well developed in 2d and to some extent 3d (cond-mat), but
unchartered until recently in d > 3.

• Higher-categorical symmetries:
topological operators of dimensions 0, · · · , d− 1, with non-invertible
fusion.
⇒ Formulation in terms of objects and higher-morphisms to capture the
full structure

The main (surprising) point to remember is:
these are symmetries that occur in vanilla 4d Yang-Mills theories (no susy, no
matter), but also very naturally realized in susy, SCFTs etc.



Non-invertible Symmetries in d > 3:

In the context of QFTs in d > 3 within the last year

[Heidenreich, McNamara, Monteiro, Reece, Rudelius, Valenzuela]

[Koide, Nagoya, Yamaguchi]

[Kaidi, Ohmori, Zheng]

[Choi, Cordova, Hsin, Lam, Shao]

[Roumpedakis, Seifnashri, Shao]

[Bhardwaj, Bottini, SSN, Tiwari]

[Choi, Cordova, Hsin, Lam, Shao]

[Kaidi, Zafrir, Zheng]

[Choi, Lam, Shao]

[Cordova, Ohmori]



Symmetry Categories

Consider a d-dimensional QFT T. Then the set of all topological defects

Di
p , p = 0, · · · , d− 1

will form a (d− 1)-category.

D2

D1

D′
1D0

• Objects: Dd−1

• 1-morphisms Dd−2 between objects

• 2-morphism Dd−3 between 1-morphisms

• · · ·

• (d− 2)-morphisms: local operators

Topological operators can be genuine or non-
genuine (ends of other topological operators)

The symmetry category CT encodes the fu-
sion of these topological defects. ”Higher fu-
sion category”



Higher-Fusion Symmetry Cats

Clearly this structure can become quickly very unwieldy (even in
topology/category theory not all the rules of this game are known)

Instead of developing the mathematical framework, I will propose a
”bottom-up”, constructive approach from QFT.



Constructive approach in QFTs

Rather than developing the general formalism we will take a constructive
approach, realizing such categories in down to earth QFTs:

Distinct – and sometimes overlapping – approaches developed in the last year:

• [Kaidi, Ohmori, Zheng] Mixed anomalies to non-invertibles

• [Choi, Cordova, Hsin, Lam, Shao] Self-duality defects

• [Bhardwaj, Bottini, SSN, Tiwari] Gauging outer automorphisms

Examples:

• Spin(4N) Yang-Mills in any dim has a Z(0)
2 outer automorphism, gauging

results in Pin+(4N)

• Gauging charge conjugation in Yang-Mills

• S3-gauging of Spin(8) Yang-Mills⇒ allows non-abelian discrete gauging



Gauging Outer Automorphisms

The symmetry is characterized in terms of the topological defects Dg
p .

Goal: determine the topological defects and their fusion after gauging an
outer automorphism.

In 3d:
was developed in condensed matter using modular tensor category tools
[Barkeshli, Bonderson, M. Cheng, Z. Wang][Teo, Hughes, Fradkin].

We generalize this to any dimension and propose a method to compute
gauging of finite, (non-)abelian 0-form symmetries: [Bhwardwaj, Bottini, SSN,

Tiwari].



Gauging Outer Automorphisms

Let G(0) be a finite, but not necessarily abelian, 0-form symmetry group,
which acts on QFT with wlog only invertible symmetries.

Example.

· · ·
C

S

Spin(4N):

4d Spin(4N) Yang-Mills, and the outer automorphism G(0) = Z(0)
2 that

exchanges the two factors of the 1-form symmetry

Γ(1) = Z(S)
2 ×Z(C)

2

These are generated by the Gukov Witten surface operators:

D
(S)
2 , D

(C)
2 , D

(V )
2 = D

(S)
2 ⊗D

(C)
2 , D

(i)
2 ⊗D

(i)
2 = D

(id)
2

What is the symmetry of the theory after gauging this outer automorphism?



Action of G(0) on Defects

D
(g)
3

D
(S)
2

g ·D(S)
2 = D

(C)
2

Example (cont.). Outer automorphism of Spin(4N) acts on the topological
defects generating the 1-form symmetry by D

(S)
1 ↔ D

(C)
1

Gauging Z(0)
2 in 4d Spin(4N) Yang-Mills gives gauge group Pin+(4N).



Non-Invertible Symmetries in 4d Pin+(4N)

The topological surface operators Dg
2 in 4d Spin(4N) Yang-Mills are

Csurfaces
Spin(4N) =

{
D

(id)
2 ,D

(S)
2 ,D

(C)
2 ,D

(V )
2

}
There are no lines that are junctions between two distinct surface operators,
but each surface has a topological line on it:

Clines
Spin(4N) =

{
D

(id)
1 ,D

(S)
1 ,D

(C)
1 ,D

(V )
1

}
Also there are topological local operators D(g)

0 .
These satisfy Z2 ×Z2 group law

D(S)
p ⊗D(S)

p = D(id)
p , D(C)

p ⊗D(C)
p = D(id)

p , D(V )
p = D(S)

p ⊗D(C)
p

The Z(0)
2 outer automorphism acts by

D(S)
p ←→ D(C)

p , D(V )
p invariant



Symmetry of the 4d Pin+(4N)

Gauging results in the following irreducible (simple) topological surface
defects:

Csurfaces
Pin+(4N) =

{
D

(id)
2 ,D

(SC)
2 ,D

(V )
2

}
,

where
D

(SC)
2 = D

(S)
2 ⊕D

(C)
2

Naively we then find the fusion

before gauging: D
(SC)
2 ⊗D

(SC)
2 = 2D

(id)
2 ⊕ 2D

(V )
2



Fusion from Junctions

To understand the fusion in the gauged theory, i.e. Pin+ we need to determine
the invariant ”junctions” between the topological operators:

D
(1)
2

D
(2)
2

D
(3)
2

J
(1,2,3)
1

=

D
(12,3)
1

D
(3)
1

D
(1)
2 ⊗D

(2)
2

There are two junctions between D
(SC)
2 ⊗D

(SC)
2 → D

(id)
2 in Spin(4N):

D
(S,S;id)
1 : D

(S)
2 ⊗D

(S)
2 → D

(id)
2

D
(C,C;id)
1 : D

(C)
2 ⊗D

(C)
2 → D

(id)
2 .



Similarly, there are two junctions D(SC)
2 ⊗D

(SC)
2 → D

(V )
2

D
(S,C;V )
1 : D

(S)
2 ⊗D

(C)
2 → D

(V )
2

D
(C,S;V )
1 : D

(C)
2 ⊗D

(S)
2 → D

(V )
2 .

These 1-morphisms are exchanged by the gauging:

D
(S,S;id)
1 ←→ D

(C,C;id)
1

D
(C,S;V )
1 ←→ D

(S,C;V )
1 .

Thus, we have single map

D
(SC,SC;id)
1 : D

(SC)
2 ⊗D

(SC)
2 → D

(id)
2

D
(SC,SC;V )
1 : D

(SC)
2 ⊗D

(SC)
2 → D

(V )
2

in Pin+(4N), and hence we obtain the fusion rule

D
(SC)
2 ⊗D

(SC)
2 = D

(id)
2 ⊕D

(V )
2



Symmetries of Pin+: Topological lines

Gauging a 0-form symmetry (in any dimensions) gives a dual Γ(d−2)

generated by topological lines, so we gain a Z2 topological line

D
(−)
1 , D

(−)
1 ⊗D

(−)
1 = D

(id)
1

On D
(V )
2 we can have the trivial line D

(V )
1 , but also a new line,

D
(V )
1 ⊗D

(−)
1 = D

(V−)
1 .

The full set of topological lines is:

Clines
Pin+(4N) =

{
D

(id)
1 ,D

(−)
1 ,D

(SC)
1 ,D

(V )
1 ,D

(V−)
1

}



Symmetries of Pin+: Topological point-operators

On D
(S)
2 ⊕D

(C)
2 there were two local operators before gauging D

(S)
0 and D

(C)
0 .

After gauging: they decompose into irreps of Z2

O± = D
(S)
0 ±D

(C)
0

O+ is invariant and genuine local operator on D
(SC)
2 , but O− is charged under

Z2, and after gauging is not a genuine operator, i.e. we need to attach the line
D

(−)
1 :

D
(SC)
2

O−

D
(−)
1



Interpretation of this? Higher-fusion:

D
(SC)
2

D
(SC)
2

D
(id)
2

O±

D
(SC)
1

D
(SC)
1

D
(id)
1 , D

(−)
1

Thus, there is a non-invertible fusion on the lines:

D
(SC)
1 ⊗D

(SC)
1 ⊃ D

(id)
1 ⊕D

(−)
1



Similarly D
(SC)
2 ⊗D

(SC)
2 can fuse also into D

(V )
2 :

D
(SC)
2

D
(SC)
2

D
(V )
2

O±

D
(SC)
1

D
(SC)
1

D
(V )
1 , D

(V−)
1

Thus, there is a non-invertible fusion on the lines:

D
(SC)
1 ⊗D

(SC)
1 = D

(id)
1 ⊕D

(−)
1 ⊕D

(V )
1 ⊕D

(V−)
1



Global Fusion

So far we have discussed local fusion: i.e. the fusion without taking into
account global aspects of the spacetime manifold Md.

In a nutshell: the global fusion of p-dimensional topological defects
D

(1)
p ⊗D

(2)
p is obtained by gauging the symmetry localized on the defect

D
(1)
p ⊗D

(2)
p .

E.g. for 4d Pin+(4N) the fusion of surfaces

D
(SC)
2 ⊗D

(SC)
2 = D

(id)
2 ⊕D

(V )
2

becomes on a 2-manifold M2

D
(SC)
2 (M2)⊗D

(SC)
2 (M2) =

D
(id)
2

Z2
(M2)⊕

D
(V )
2

Z2
(M2)

where D
(i)
2

Z2
(M2) for i ∈ {id, V } denotes the surface defect obtained by gauging

the Z2 0-form symmetry of D(i)
2 wrapped along M2. These are precisely

condensation defects – see [Gaiotto, Johnson-Freyd][Choi, Cordova, Hsin, Lam

Shao][Rumpedakis, Seifnashri, Shao]



For abelian G we can compare to the complementary approach by [Kaidi,

Ohmori, Zheng] (and a slightly different approach [Choi, Cordova, Lam, Shao]), who
derived non-invertible symmetries by gauging mixed anomalies.

Indeed, the Pin+(4N) non-invertible symmetries can be obtained also by
following the KOZ approach:

Spin(4N)

2-group
δB2 = A1C2

SO(4N)

mixed anomaly
A = π

∫
5d

A1C2B
′
2

PO(4N)

non-invertibles

Pin+(4N)

non-invertibles

Sc(4N)

non-invertibles

gauge B2 gauge A1 and B′
2

gauge A1
and C2

gauge B ′
2 and C

2



Non-Invertible in 5d

5d N = 2 Spin(4N) super Yang-Mills has a 3-categorical symmetry{
D

(id)
i ,D

(S)
i ,D

(C)
i ,D

(V )
i

}
, i = 3,2,1

Gauging Z(0)
2 outer automorphism we get simple objects

CiPin+(4N) =
{
D

(id)
i ,D

(SC)
i ,D

(V )
i

}
i = 3: objects; i = 2: 1-endomorphisms. These have fusion

D
(SC)
i ⊗D

(SC)
i = D

(id)
i ⊕D

(V )
i

The 2-endomorphisms are

C2-endo
Pin+(4N) =

{
D

(id)
1 ,D

(−)
1 ,D

(SC)
1 ,D

(V )
1 ,D

(V−)
1

}
with fusion of TY type

D
(SC)
1 ⊗D

(SC)
1 = D

(id)
1 ⊕D

(−)
1 ⊕D

(V )
1 ⊕D

(V−)
1



The non-trivial global fusion is

D
(SC)
3 (Σ3)⊗D

(SC)
3 (Σ3) =

D
(id)
3

Z(1)
2

(Σ3)⊕
D

(V )
3

Z(1)
2

(Σ3)

where
D

(id)
3

Z(1)
2

: Z(1)
2 generated by D

(id)
1 ,D

(−)
1

D
(V )
3

Z(1)
2

: Z(1)
2 generated by D

(V )
1 ,D

(V−)
1



Scope and Extensions

Huge scope to construct non-invertible symmetries, which you can find in
[Bhardwaj, Bottini, SSN, Tiwari]:

1. Non-invertible symmetries for disconnected gauge groups O(2)

(consistent with [Heidenreich, McNamara, Monteiro, Reece, Rudelius, Valenzuela])and
S̃U(N) (gauging charge conjugation)

2. Allows gauging non-abelian finite symmetries

3. Non-invertible 3-categorical symmetries in absolute 6d (2,0) theories, e.g.[
SO(2n)× SO(2n)

]
⋊Z2

4. Non-invertible symmetries in 5d SCFTs



Non-Invertibles and Deconfining/Confining Vacua

Recall, 1-form symmetries provide order parameters for confinement: Γ(1)

unbroken/broken corresponds to confining/deconfining vacuum.

Non-invertibles arise in 4d N = 1 SYM from mixed ’t Hooft anomaly between
chiral symmetry and 1-form symmetry and provide non-invertible domain
walls between confining and deconfining vacua – depending on the global
form of the gauge group [Bottini, SSN; wip].

Example su(2): Line operators are generated by W Wilson and H ’t Hooft
lines. Unbroken Γ(1) in the two vacua (monopole and dyon condensing
vacuum) for each polarization (aka global form of the gauge group):

Genuine line operators G Γ
(1)
m Γ

(1)
d

<W > SU(2) Z2 Z2

< H > SO(3)+ ∅ Z2

< H +W > SO(3)− Z2 ∅



Physical Implications of non-Invertible Symmetries

We know that between the two confining vacua of SU(2) there is an invertible
domain wall. What about SO(3)?

There is a mixed ’t Hooft anomaly Z(0)
4 and Z(1)

2 with ’t Hooft anomaly

A = π

∫
M5

A1 ∪
P(B2)

2

Let D(n)
3 generate Z(0)

4 , with D
(2)
3 generating the the non-anomalous Z(0)

2

subgroup.

Apply the [Kaidi, Ohmori, Zheng] mixed anomaly approach to this setup: To
gauge the 1-form symmetry, the defect D(1)

3 needs to be dressed by a TQFT (as
it is not gauge invariant due to the mixed anomaly)

N (1)
3 = D

(1)
3 ×T

where T is the minimal TQFT with anomaly P(B) [Hsin, Lam, Seiberg]: U(1)2 CS.



Physical Implications of non-Invertible Symmetries

In SO(3) SYM we then have a non-invertible defect

N (1)
3 ⊗N (1)

3 =
D

(2)
3

|H0(M3,Z2)|

 ∑
M2∈H2(M3,Z2)

(−1)χ(M2)D1(M2)


N (1)

3 ⊗N (1)

3 =
1

|H0(M3,Z2)|

 ∑
M2∈H2(M3,Z2)

(−1)χ(M2)D1(M2)


where D1(M2) = e

iπ
∮
M2

B2 generates Γ(1) of SO(3).

In SO(3) this non-invertible defect corresponds to the domain wall between
the confining and deconfining vacua.

Can be applied in all ”reading between the lines” [Aharony, Tachikawa, Seiberg]

global forms, to study the IR behavior of the N = 1 SYM theories. [Bottini, SSN;

wip]



Outlook

Generalized symmetries – higher form, higher group and non-invertible
symmetries – are ubiquitous in QFTs

1. Learn to gauge higher-form/non-invertible symmetries in
higher-categories; ’t Hooft anomalies

2. Physical implications of these symmetries (confinement, pion decay etc)

3. Develop a mathematically sound framework for higher fusion categories
(higher meaning ≥ 2)

4. Is this the most general ”symmetry structure” for QFTs?

5. String theory realization of non-invertibles (e.g. using SymTFT)

Thank you!


